人工智能可助提前数年预测心脏病风险,心脏病患者福音

日期:2020-02-03编辑作者:环球动态

作者:张家伟 来源:新华网 发布时间:2019/9/5 12:59:18 选择字号:小 中 大 人工智能可助提前数年预测心脏病风险

英国研究人员研发了一种植入人工智能系统的医疗设备,通过“自学”各种医学指征和数据来预测患者的心脏病发病风险,准确率高于人类医生。

图片 1

新华社伦敦9月4日电 英国牛津大学4日发布新研究成果显示,研究人员基于人工智能技术开发出一种新工具,可在心脏病发作前至少5年就判断出一个人是否属于这类疾病的高风险人群。

心脏病发作防御,在全世界都是个难题?除了普遍存在的医疗政策、患者意愿、医生决策等不利因素以外,多药降压方案使用不足,严重影响到了病情控制!医生有很多工具和方法预测患者的健康隐患,但仍无法百分百应对人体的复杂性,心脏病发作就是最难预测的情况之一。

人工智能可能有助于预防心脏衰竭。图片来源:Devrimb/iStockphoto

目前,如果一个人出现胸部疼痛等疑似心脏病症状时,传统检测方法主要依靠对冠状动脉扫描结果的判读,但这种方法有时并不一定能检测出病患未来会否心脏病发作。

全球每年有近2000万人死于心梗、中风、血管堵塞等心血管系统疾病。影响人体健康的因素很多,人体各系统的相互作用也十分复杂,计算机科学可以帮助医务人员探索这些因素之间的关联。在他们开发的人工智能系统中,计算机使用了4种机器学习方法,分析英国近38万名患者的电子医疗记录,寻找心脏病发病模式。在中国,也有相关的公司在研究检测健康系统的远程医疗设备,朗锐慧康就是其中一家。

医生有很多工具用来预测一名患者的健康情况。但他们也许会告诉你,这些工具无法与人体的复杂性完全匹配。特别是心脏病便很难进行预测。如今,科学家报告说,他们研发了一种人工智能系统,这种能够自学的计算机可以比标准的医学指南做得更好,从而显著提高预测的准确率。一旦投入应用,新的方法每年将能够拯救数千甚至数百万人的生命。

该校研究人员使用机器学习方法对大量的血管扫描数据进行深度分析,从而开发出的一种全新生物标记物,能够识别出为心脏供血的血管周围间隙出现的异常,如发炎、瘢痕等可预示未来心脏病发作的迹象。出于机器学习的特性,加入的扫描数据越丰富,预测就越准确。

人工智能系统首先进行自我训练,使用78%的患者数据来寻找发病模式并构建自己的诊断指导系统。接下来,系统用剩余22%的医疗记录对自己进行测试:先用2005年的数据进行学习归纳,然后预测此后10年内哪些患者会首次患上心血管疾病,最后使用近年来的记录检查预测结果。

并未参与该项研究的美国加利福尼亚州帕洛阿尔托市斯坦福大学心血管外科医生Elsie Ross表示:“我已经无法表达它是多么重要。”Ross说:“我多么希望医生们开始接受人工智能的使用,并用它来帮助我们照顾病人。”

团队在1575名志愿者身上测试了这项新技术,反馈结果良好,比现有诊断工具都要优异。他们计划明年向医护人员推广这一新检测技术。

结果显示,4种机器学习方法预测心脏病发作的准确率全部优于传统医生诊断标准。美国心脏病协会预测指导方针的准确率在72.8%,而4种人工智能方法的精确度在74.5%到76.4%之间。其中准确率最高的一种机器学习方法还降低了一定的错误预警率,相当于在8.3万名患者中额外挽救了355人的生命,因为错误预警诊断可能会让本不需要服用降低胆固醇药物的人服药,滥用药物同样对人体有害。

美国心脏病协会的统计数据显示,全球每年有近2000万人死于心梗、中风、血管堵塞等心血管系统疾病。包括美国心脏病协会在内的很多机构使用年龄、胆固醇水平、血压等8到10项指标来预测患者的心脏病发作风险。

领衔该研究项目的牛津大学教授哈拉兰博斯安东尼亚德斯说,利用人工智能开发的这个新工具能够找到人们血管周围的坏特征,这在早期心脏病风险检测方面具有很大潜力,让医护人员能够提前为病患采取预防措施。

研究人员表示,他们计划接下来让机器学习算法涵盖生活方式和遗传等因素,进一步提高预测的精确度,更好地帮助医务人员预测患者心脏病发作风险。

英国诺丁汉大学研究人员在美国《科学公共图书馆·综合》杂志上报告说,影响人体健康的因素很多,人体各系统的相互作用也十分复杂,计算机科学可以帮助医务人员探索这些因素之间的关联。在他们开发的人工智能系统中,计算机使用了4种机器学习方法,分析英国近38万名患者的电子医疗记录,寻找心脏病发病模式。

特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的来源,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

本文由朗锐慧康编辑整理(www.lrioh.com),转载请注明出处。

英国诺丁汉大学流行病学家Stephen Weng表示:“在生物系统中有很多交互作用。”“这是人体的现实。”Weng说,“计算机科学所做的就是让我们能够探索这些关联。”

据介绍,人工智能系统首先进行自我训练,使用78%的患者数据来寻找发病模式并构建自己的诊断指导系统。接下来,系统用剩余22%的医疗记录对自己进行测试:先用2005年的数据进行学习归纳,然后预测此后10年内哪些患者会首次患上心血管疾病,最后使用2015年的记录检查预测结果。

结果显示,4种机器学习方法预测心脏病发作的准确率全部优于传统医生诊断标准。美国心脏病协会预测指导方针的准确率在72.8%,而4种人工智能方法的精确度在74.5%到76.4%之间。其中准确率最高的一种机器学习方法还降低了一定的错误预警率,相当于在8.3万名患者中额外挽救了355人的生命,因为错误预警诊断可能会让本不需要服用降低胆固醇药物的人服药,滥用药物同样对人体有害。

此外,与美国心脏病协会的指导方针不同,这个人工智能系统综合考虑了超过22个因素。被人工智能系统认定为心脏病发作高危因素的严重神经疾病、口服皮质类固醇等因素都没有在美国心脏病协会的指导方针中。而美国心脏病协会推荐将糖尿病作为预测心脏病发作的高风险因素之一,但4种机器学习算法都排除了这一风险因素。

在英国曼彻斯特大学从事初级护理数据库工作的数据科学家Evangelos Kontopantelis表示:“这是一项高质量的工作。”Kontopantelis指出,把更多的计算能力或更多的训练数据用于这个问题“可能会带来更大的收益”。

研究人员表示,他们计划接下来让机器学习算法涵盖生活方式和遗传等因素,进一步提高预测的精确度,更好地帮助医务人员预测患者心脏病发作风险。

那么医生会很快在他们的实践中采用类似的机器学习方法吗?Ross说,医生一直为自己的专业知识感到自豪。“但是像我一样的新一代的一员认为,我们或许可以由计算机进行辅助。”

本文由澳门威尼斯人app发布于环球动态,转载请注明出处:人工智能可助提前数年预测心脏病风险,心脏病患者福音

关键词:

癌症取代心血管疾病成为发达国家的主要死因,全球迎肥胖潮

发源:中新网 发布时间:2019/9/4 14:38:31 选择字号:小 中 大癌症代替心血管病痛成为先进国家的首要性死因 近日,《...

详细>>

新型核磁共振设备能,确认tau蛋白是阿尔茨海默症的关键驱动因

发源:中国青年报 发表时间:2019/9/15 10:08:25 选取字号:小 中 大新型核磁共振设备能“看见”大脑分子变化 人民早报...

详细>>

疫苗今年将开展数千例人体试验,疫苗即将开启大规模人体实验

我:贺梨萍 来源:澎湃信息 公布时间:2019/8/7 9:27:34 选择字号:小 中大 梅毒免疫性新希望? “塞内加尔达喀尔克”...

详细>>

澳洲研究人员发现可预防结直肠癌的化合物,科学家发现可预防

来源:新华网 发布时间:2019/9/2 14:02:28 选择字号:小 中 大澳洲研究人员发现可预防结直肠癌的化合物 据新华社电澳...

详细>>